f-r-cox@comcast.net
Repetition of 251 Years
Throughout
the book of Genesis
72 pages, 11 tables

Related Topics:
MYTHS
DUALITY

CODE 666
CODE 243

CODE 427
CODE 294

CODE 251 CODE 166

Repetition of 19 Years
Throughout the Last 1900 Years

by Floyd R. Cox

Why is a lunar-solar calendar important? There are several reasons. 1. King David and Solomon used it to compel all 12 tribes of Israel to come to Jerusalem to celebrate high days and give them financial support. 2. Special events have occurred on new moons, full moons, sabbaticals and jubilee years. 3. Future events are likely to happen according to these same days and years. This can be used to create a religion based upon prophecy.

KINGS
BOOKS
LETTERS
SUMMARY
CODE 490
SUMMARY
CODE 251
PURPOSE EXODUS

GENETICS

12 Moons in Sync with 12 Months

A lunar-solar calendar adds a 13th lunar month seven times in 19 years to keeps lunar years (12 lunar months) in sync with solar years (12 solar months) in order to begin the years and four seasons at the right time. We know that spring now begins on about March 21, when days and nights are equal (equinox means "equal nights". Therefore, the solar years can be counted with a sundial, which shows when sun rises due east and sets due west on a certain day each year.

If the new moon happened to begin at the day of the equinox, the $12^{\text {th }}$ moon would be short about 11 days of reaching 365 days. In the third year, the gap would expand to about 33 days, and an extra $13^{\text {th }}$ moon would be needed to place the $14^{\text {th }}$ moon near the equinox, at the beginning of a new year, as the first moon of the next year. This needs to be done seven times in 19 years.

An eclipse happens about 11 days after the beginning of the $19^{\text {th }}$ year, when the sun and moon are in line with the earth. After these 11 days, there is room for one more moon before the 19 years are complete, and the same sequence starts over during the next 19 years. The previous 18 years are called a "Saros" or "eclipse cycle".

Having said this, how do we know when the beginning of the 19 years has begun in the past?

Cycles Began in 3761 and 37 BC

Finding when the 19-year cycle and 7-year cycle have begun has been an insurmountable task for almost everyone.

One minister instructed his followers to simply count from the dates they were baptized and wait for Christ to return to restore the proper year. Could he have been more certain of when the seventh year is?

Yes, the answer is rather simple once it has been revealed. The key is found in 37 BC , when Herod conquered Jerusalem The Levite priest-historian, Josephus, said this was in a sabbatical year.

The first key is to count the 7 years and 19 years from the rabbinical date of Creation, that is, from 3761 BC. Moreover, if Herod captured Jerusalem in 37 BC , then it was both a seventh year and also the $19^{\text {th }}$ year. How can we prove this? 37 BC was 196×19 years after rabbinical date of Creation in 3761 BC. It was also 19×4 jubilees (196 yrs.) after Creation!

TABLE 1. Time Pattern of 37 BC
From
3761 BC (rabbinical Creation)
3761 BC
968 BC (temple)
968 BC
968 BC
331 (Alexander's sabbatical grant)

To

 37 BC37 BC
37 BC
37 BC
37 BC
37 BC

Years

3724 (4 jubilees x 19)
(196 19-year cycles)
931 (19 jubilees)
(49 19-year cycles)
(1 jubilee x 19)
294 (6 jubilees)

What is the evidence that 3761 was the beginning of the 7 -year, 49 -year and 19 -year cycles?
From Josephus, a first century Levite historian, we learn that Herod conquered Jerusalem in a sabbatical year, in 37 BC .

To find whether 37 BC was a sabbatical, simply subtract 37 BC from 3761 BC (Creation?), which will give us 3724 years. Dividing that by seven results in 532 sabbaticals! $(532 \times 7=3920)$. 532 years are composed of 28 years (of the solar cycle) times 19 years (of the lunar cycle).

Just as dates repeat on the same month and day every 19 years, all dates repeat on the same day, week and month in 532 years.

Now Consider 3957 BC

Moreover, if we subtract 37 BC from 3957 BC, we get 3920 years. Divide this by seven, and we get 560 sabbaticals! ($560 \times 7=3920$). And 3957 was four jubilees before 3761 . Thus, we can say that both 3957 and 3761 began with new 7 -year sabbaticals and 49 -year jubilees.

It seems more meaningful when we combine the 19 -year and 7 -year cycles. Include the 7 -year and 49 -year cycles called sabbaticals and jubilees, and we find that 37 BC was 294 years (6 jubilees) after Alexander allowed the Jews to observe their sabbaticals without paying tribute after 331 BC .

Importance of Herod

Why is Herod's capture of Jerusalem important? Like the dragon of Revelation 12:4, he slew the children of Bethlehem trying to kill the Christ-child.

Herod was King over the Jews. Thus the dragon likely represents Herod and/or his sons and grandsons. Christ was later brought before Herod's son for judgment in 30 or 31 AD, (Revelation also reflects the time near the exodus, when the Pharaoh was trying to kill Moses after his birth.) There was an eclipse near the time that Herod died in his $70^{\text {th }}$ year.

Why a Lunar-Solar Calendar?

The lunar-solar calendar was an important tool to summon all 12 tribes of Israel to return to Jerusalem on the Passovers and holy days and to support Jerusalem financially. When 10 tribes of Israel formed a separate government north of Jerusalem in 931 BC, the leaders of Israel immediately changed the times and seasons to prevent tribes from returning. Likewise today, the Christian world withdraws from recognizing the Intelligent Design of events based upon the Hebrew calendar and, allegedly, to transcend the old world of "an eye for an eye and a tooth for a tooth".

However, there is a mysterious connection between events and the calendar. Jerusalem was burned after 588 BC , seven jubilees (343 years) after the 10 tribes departed from Judah. It was burned again after another 94 sabbaticals, in 70 AD . Christ was crucified during a full moon. If it were on April 25, 31 AD , it was on the day of a lunar eclipse, which was at the hour of 23:02:35. An interpretation of Daniel 9:27 says He was killed in the middle of a sabbatical cycle, between 28 and 34 AD . Time patterns like these seem to imply special significance regarding the calendar.

A lunar calendar begins with new moons, when the moon is between the earth and sun. Full moons are when the earth is between the sun and the moon. Solar eclipses and lunar eclipses only occur during new moons and full moons.

Perhaps important events have happened or will occur on these days. After Jerusalem burned in 70 AD , a solar eclipse occurred on the first day of the Hebrew lunar calendar, on Nisan 1, 71 AD (March 20), and the sun was so completely covered by the moon that stars could be seen at noon in Greece.

However, this only happens once in 350 years in any particular point on the earth. Nevertheless, if we could document when these have occurred or will occur, we might discover that major events have happened, thus may happen, in a 19-year pattern or on a new moon or full moon.

Accuracy of the calendar can be verified by modern-day eclipses. A lunar eclipse occurred just after the Passover on Nisan 14 (April 3, 1996) during a full moon, on the Night to be Much Observed. This should not happen if the 235 moons in 19 years were .08056 days longer than each 19 -year period if it were not self-correcting. It would be off 8.5 days in 2,000 years.

Other events during the life of Christ may have been related to the calendar, but these should be confirmed by documents, not by just the calendar alone. After all, we were not there.

The following TABLE 3 is extrapolated from the following link, http://www.friesian.com/calendar.htm. It illustrates the 19-year cycles for over 4370 years, from 2343 BC to 2027 AD . It is based upon actual observations of the lunar months during and after the Era of Nebonassar, which began in 747 BC, 169×19 years after 3958 BC. Note that the years with 13 months (the blue lines) begin with March 21 (the equinox) and follow April 19, the latest date allowed for the first month to begin a new year. These dates gain one day every 228 years. Thus, the $13^{\text {th }}$ month is not always inserted in years $3,6,8,11,14,17$ and 19 in the 19 -year cycles. 235 moons in 19 years are $1 / 228$ of a day longer than 19 years and gain a day in 228 years.

Note that the Passover in 31 AD would not normally be delayed until the second month, Wednesday, April 25, 31 AD unless the Sanhedrin (court) intervened for a good cause. It would normally be observed on Monday, March 26.

Also note that the rabbinical 19-year cycle restarts in 1998 AD, whereas, the Era of Nebonassar restarts in 1989.

TABLE 3. 228-Year Cycle 2115 BC to 1990 AD

TABLE 3. Recent Solar Eclipses ${ }^{1}$, Cycle of 18 Years, 11 Days, 8 Hours ${ }^{2}$
Saros 129 runs from Oct. 03, 1103 to Feb. 21, 2528 AD (1424.38 yrs.) ${ }^{3}$

18 -year cycle (223 lunations), that is, 12 lunar months before 19 years.
= 19-year cycle (235 lunations)
${ }^{1}$ Solar eclipses occur on new moons. Lunar eclipses are during full moons.
${ }^{2}$ Eclipse cycle (223 moons) ends about 354 days (12 moons) before the end of 19-years (235 moons), 11.3333 days after the end of the 18-year cycle.
${ }^{3}$ Calculations by Fred Espenak, NASA/GSFC, Fifty Year Canon of Solar Eclipses: 1986-2035.

TABLE 4. Lunar Calendar Matches Lunar and Solar Eclipses

Hebrew Calendar Dates New Moon	NASA Dates Solar Eclipses	Hebrew Calendar Dates Full Moon	NASA Dates Lunar Eclipses
		Iyar 14, Apr 25 (Passover?), 31 AD Heshvan 14, Oct 19, 31 AD	$\begin{aligned} & \text { Apr 25, } 31 \mathrm{AD} \\ & \text { Oct 19, } 31 \mathrm{AD} \end{aligned}$
Sivan 1, May 11, 31 AD Nisan 1, Mar 21, 71 AD	May 10, 31 AD Mar 20, 71 AD		
Nisan 1, Mar 21, 71 AD	Mar 20, 71 AD	Adar 14, Mar 5, 71 AD Elul 14, Aug 29, 71	Mar 4, 71 Aug 29, 71
Iyar 28, Apr 17, 1996	Apr 17-1996	Nisan 14 (Passover) April 3, 1996	April 4, 1996
Tishri 29, Oct 12, 1996	Oct 12-1996	Tishri 15 (Tabernacles) Sep 28, 1996	Sep 27, 1996
Elul 1, Sep 3, 1997	Sep 3, 1997	Adar II 14, Mar 23, 1997	Mar 24, 1997
Keslev 1, Nov 4, 2013	Nov 3, 2013	Nisan 14 (Passover) Apr 24, 2013	Apr 25, 2013
Nisan 29, Apr 29, 2914	Apr 29, 2014	Nisan 14 (Passover) Apr 14, 2014	Apr 15, 2014
http://www.cbcg.org/Calendar/index.html			
http://eclipse.gsfc.nasa.gov/phase/phasecat.html			
http://eclipse.gsfc.nasa.gov/SEcat5/catalog.html			
http://www.livius.org/ja-jn/jewish wars/jwar04.html			
http://www.friendsofsabbath.org/ABC/Kenneth Herrmann/			
http://www.cbcg.org/franklin/calendar of Christ part2 section2.pdf			

Quoting other Sources

A final note on the year of the Crucifixion, we find that Eusebius, in his Chronicle, citing the Gospel of John, states that Jesus was crucified in his third visit to Jerusalem to keep the Passover during his ministry (John 3:13; 6:4; 11:55) Jerome also said it was in the third year of the $202^{\text {nd }}$ Olympiad (http://www.mghbibliothek.de/dokumente/a/a127662.txt. Search for "third year of the $202^{\text {nd }}$ Olympiad"). The $202^{\text {nd }}$ begins after 201 Olympiads, after 776 BC, which equal 804 years (201×4). The third year is the $807^{\text {th }}$ year. This makes 31 AD the $807^{\text {th }}$ year $(201 \times 4+3=807)(776 \mathrm{BC}-807=31 \mathrm{AD}$.

When is the Next Sabbatical and Jubilee?

Why study sabbaticals and jubilees? The above evidence shows they are an integral part of God's over-all master plan and may help us understand the time of the end.

2015 AD is the next sabbatical.
2022 AD is 49 jubilees after Herod conquered Jerusalem, and 427 sabbaticals after Solomon's temple.

